DEVI AHILYA VISHWAVIDYALAYA, INDORE M.Sc. CHEMISTRY (SEMESTER – II)

Paper No. Compulsory /Optional Max. Marks

: II (Code-MCH-407)

: Compulsory

: 100

Paper – II : Organic Chemistry

Unit – I	Aromatic Electrophilic Substitution
	The arenium ion mechanism, orientation and reactivity, energy profile diagrams. The
	ortho/para ratio, ipso attack, orientation in other ring systems. Quantitative treatment of
	reactivity in substrates and electrophiles. Diazonium coupling, Vilsmeir reaction,
	Gatterman-Koch reaction.
	Aromatic Nucleophilic Substitution
	The SNAr SN1, benzyne and SN1 mechanism, Reactivity effect of substrate structure,
	leaving group and attacking nucleophile. The Von Richter, Sommelet-Hauser, and
	Smiles rearrangements.
Unit – II	Free Radical Reactions
	Types of free radical reactions, free radical substitution mechanism, mechanism at an
	aromatic substrate, neighbouring group assistance. Reactivity for aliphatic and aromatic
	substrates at a bridgehead. Reactivity in the attacking radicals. The effect of solvents on
	reactivity. Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, auto-
	oxidation, coupling of alkynes and arylation of aromatic compounds by diazonium salts,
	Sandmeyer reaction. Free radical rearrangement. Hunsdiecker reaction.
Unit – III	Addition Reactions
	Mechanistic and stereochemical aspects of addition reactions involving electrophiles,
	nucleophiles and free radicals, regio- and chemo-selectivity, orientation and reactivity.
	Addition to cyclopropane ring. Hydrogenation of double and triple bonds,
	hydrogenation of aromatic rings. Hydroboration, Michael reaction, sharpless
	asymmetric epoxidation.
Unit – IV	Addition to Carbon-Hetero Multiple bonds
	Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds,
	acid esters and nitriles. Addition of Grignard reagents, organozinc and organolithium
	reagents to carbonyl and unsaturated carbonyl compounds. Wittig reaction. Mechanism
	of condensation reactions involving enolates-Aldol, Knoevenagel, Claisen, Mannich,
	Benzoin, Perkin and Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of
	esters.
	Elimination Reactions
	The E ₂ , E ₁ and E ₁ cB mechanisms and their spectrum. Orientation of the double bond.
	Reactivity-effects of substrate structures, attacking base, the leaving group and the
	medium. Mechanism and orientation in pyrolytic elimination.

\$ (4cmm) -16

1) share 2-9-2016

2-01-16

CS2

allo mallo

17

Pericyclic Reactions

Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of periycyclic reactions. Woodward-Hoffmann correlation diagrams. FMO and PMO approach. Electrocyclic reactions-conrotatory and disrotatory motions, 4n 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketenes, 1,3 dipolar cycloadditions and cheleotrpic reactions. Sigmatropic rearrangements-suprafacial and antarafacial shifts of H, sigmatropic involving carbon moieties, 3,3- and 5,5-sigmatropic rearrangements. Claisen, Cope and aza-Cope rearrangements. Fluxional tautomerism. Ene reaction.

Books Suggested:

- 1. Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sunderg, Plenum.
- 3. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 4. Structure and Mechanism in Organic Chemistry, C.K. Ingold, Comell University Press.
- 5. Organic Chemistry, R.T. Morrison and R.N. Boyd, Prentice-Hall.
- 6. Modern Organic Reactions, H.O. House, Benjamin.
- 7. Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professional.
- 8. Reaction Mechanism in Organic Chemistry, S.M. Mukherji and S.P. Singh, Macmillan.
- 9. Pericyclic Reactions, S.M. Mukherji, Macmillan, India
- 10. Stereochemistry of Organic Compounds, D.Nasipuri, New Age International.
- 11. Stereochemisty of Organic Compounds, P.S. Kalsi, New Age International.

Demm 2.9.16