DEVI AHILYA VISHWAVIDYALAYA, INDORE

M.Sc. CHEMISTRY (SEMESTER - II)

Paper No.

Compulsory / Optional

Max. Marks

: IV (Code- MCH - 409)

: Compulsory

: 100

Paper - IV: Spectroscopy II & Diffraction Methods

Unit - I	Nuclear Magnetic Resonance Spectroscopy
	Nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift
	and its measurements, factors influencing chemical shift, deshielding, spin-spin
	interactions, factors influencing coupling constant "j" Classification (AXB, AMX, ABC, A ₂ B ₂ etc.). Spin decoupling; basic ideas about instrument, NMR studies of nuclei other
	than proton- ¹³ C, ¹⁹ F and ³¹ P. FT NMR, advantages of FT NMR.
Unit - II	Nuclear Quadrupole Resonance Spectroscopy
,	Quadrupole nuclei, quadrupole moments, electric field gradient, coupling constant, splitting. Applications.
Unit - III	Electron Spin Resonance Spectroscopy
	Basic principles, zero field splitting and Kramer's degeneracy, factors affecting the 'g'
	value. Isotropic and anisotropic hyperfine coupling constants, spin Hamiltonian, spin
	densities and Mc Connell relationship, measurement techniques, applications.
Unit – IV	X-ray Diffraction
	Bragg condition, Miller indices, Laue Method, Bragg method, Debye Scherer method of
	X-ray structural analysis of crystals, index reflections, identification of unit cells from
	systematic absences in diffraction pattern, Structure of simple lattices and X-ray
	intensities, structure factor and its relation to intensity and electron density, phase problem. Description of the procedure for an X-ray structure analysis, absolute
	configuration of molecules.
Unit -V	Electron Diffraction
	Scattering intensity vs. scattering angle, Wierl equation, measurement technique,
	elucidation of structure of simple gas phase molecules. Low energy electron diffraction
	and structure of surfaces.
	Neutron Diffraction
	Scattering of neutrons by solids measurement techniques, Elucidation of structure of
	magnetically ordered unit cells.
Dooles avenue	

Books suggested:

- 1. Modern Spectroscopy, J.M. Hollas, John Viley.
- 2. Applied Electron Spectroscopy for chemical analysis d. H. Windawi and F.L. Ho, Wiley Interscience.
- 3. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, R.V. Parish, Ellis Harwood.
- 4. Physical Methods in Chemistry, R.S. Drago, Saunders College.
- 5. Chemical Applications of Group Theory, F.A. Cotton.
- 6. Introduction to Molecular Spectroscopy, G.M. Barrow, Mc Graw Hill.
- 7. Basic Principles of Spectroscopy, R. Chang, Mc Graw Hill.
- 8. Theory and Application of UV Spectroscopy, H.H. Jaffe and M. Orchin, IBH- Oxford.
- 9. Introduction to Photoelectron Spectroscopy, P.K. Ghosh, John Wiley.
- 10. Introduction to Magnetic Resonance. A Carrington and A.D. Maclachalan, Harper & Row.

8 penn

)shama 2-9-2016

yning

\$9.16 6049

21